The Chain Rule: Differentiating Composite Functions

The Chain Rule is used when you need to find the derivative of a "function inside another function."

Core Theorem
If y=f(g(x))y = f(g(x)), then:
y=f(g(x))g(x)y' = f'(g(x)) \cdot g'(x)

TL;DR: Outside-In: Differentiate the outer layer, then multiply by the inner derivative.

Practice Exercises


Example 01Easy
Find f(x)f'(x) for f(x)=(3x2+1)4f(x) = (3x^2 + 1)^4.
NEED A HINT?
Identify the 'outer' function as u4u^4 and the 'inner' function as 3x2+13x^2 + 1.
SHOW DETAILED EXPLANATION

Step 1: Outer Derivative

Differentiate the power: 4(3x2+1)34(3x^2 + 1)^3.

Step 2: Inner Derivative

Differentiate 3x2+13x^2 + 1 to get 6x6x.

Step 3: Combine

Multiply them: 4(3x2+1)36x=24x(3x2+1)34(3x^2 + 1)^3 \cdot 6x = 24x(3x^2 + 1)^3.
Example 02AB/BC Standard
Find h(2)h'(2) if h(x)=f(g(x))h(x) = f(g(x)), given g(2)=3,g(2)=5,f(3)=7g(2)=3, g'(2)=5, f'(3)=7.
NEED A HINT?
Apply the formula h(x)=f(g(x))g(x)h'(x) = f'(g(x))g'(x) directly with the given values.
SHOW DETAILED EXPLANATION

Step 1: Write Formula

h(2)=f(g(2))g(2)h'(2) = f'(g(2)) \cdot g'(2).

Step 2: Substitute $g(2)$

h(2)=f(3)g(2)h'(2) = f'(3) \cdot g'(2).

Step 3: Final Calculation

h(2)=75=35h'(2) = 7 \cdot 5 = 35.
Limited Time Offer

Master the Calculus of Infinity

Get the full specialized course including 1000+ deep-dive examples and step-by-step solutions.